Mathematical Programs with Equilibrium Constraints: Automatic Reformulation and Solution via Constrained Optimization
نویسندگان
چکیده
Constrained optimization has been extensively used to solve many large scale deterministic problems arising in economics, including, for example, square systems of equations and nonlinear programs. A separate set of models have been generated more recently, using complementarity to model various phenomena, particularly in general equilibria. The unifying framework of mathematical programs with equilibrium constraints (MPEC) has been postulated for problems that combine facets of optimization and complementarity. This paper briefly reviews some methods available to solve these problems and describes a new suite of tools for working with MPEC models. Computational results demonstrating the potential of this tool are given that automatically construct and solve a variety of different nonlinear programming reformulations of MPEC problems. This material is based on research partially supported by the National Science Foundation Grant CCR-9972372, the Air Force Office of Scientific Research Grant F49620-011-0040, Microsoft Corporation and the Guggenheim Foundation Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD Permanent address: Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, Wisconsin 53706, USA GAMS Development Corporation, 1217 Potomac Street, N.W., Washington, D.C. 20007
منابع مشابه
Mathematical Programs with Cardinality Constraints: Reformulation by Complementarity-Type Conditions and a Regularization Method
Optimization problems with cardinality constraints are very difficult mathematical programs which are typically solved by global techniques from discrete optimization. Here we introduce a mixed-integer formulation whose standard relaxation still has the same solutions (in the sense of global minima) as the underlying cardinality-constrained problem; the relation between the local minima is also...
متن کاملGlobal Solution to Parametric Complementarity Constrained Programs and Applications in Optimal Parameter Selection By
This thesis contains five chapters. The notations, terminologies, definitions and numbering of equations, theorems and algorithms are independent in each chapter. Chapter 1 provides a fundamental introduction and contextual discussions to provide a unified theme for the subsequent chapters into a complete work. Chapters 2, 3 and 4 are arranged for ease of reading and understanding separately. F...
متن کاملChance constrained problems: penalty reformulation and performance of sample approximation technique
We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6, 11]. The obtained problems with penalties and with a fixed set of feasible so...
متن کاملA New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints
We present a new relaxation scheme for mathematical programs with equilibrium constraints (MPEC), where the complementarity constraints are replaced by a reformulation that is exact for the complementarity conditions corresponding to sufficiently non-degenerate complementarity components and relaxes only the remaining complementarity conditions. A positive parameter determines to what extent th...
متن کاملOptimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions
We consider the generalized Nash equilibrium problem which, in contrast to the standard Nash equilibrium problem, allows joint constraints of all players involved in the game. Using a regularized Nikaido-Isoda-function, we then present three optimization problems related to the generalized Nash equilibrium problem. The first optimization problem is a complete reformulation of the generalized Na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002